
Steven Borrelli 11 Sept 2024

Linus Torvalds &
Greg Kroah-Hartman at
Kubecon China 2024

About
@stevendborrelli

• Intro to Unix: NeXTstep 

• AIX Admin 

• First Linux: RedHat 4.2 with 2.0.32 Kernel 1997 
 

• Currently focus on Cloud and Kubernetes  

• Work for upbound.io as a Principal Solutions Architect 
 

http://upbound.io

Origin of this Talk

Origin of this Talk

https://sched.co/1eYZ7

https://sched.co/1eYZ7

Link to Presentation & Video: https://sched.co/1fAqj

https://sched.co/1fAqj

Linux is a Massive Project
Most code is in Drivers

Complexity
Lines of Code

Linux Core is fairly small, most of the code is in drivers.

• Server ~ 1.5MM

• Desktop/Laptop ~2MM

• Phone ~ 4MM

Development Process

• 9 Changes an Hour

• 9 Week Release Cycle

• All releases are stable:

Parallel Development
1-2 Stable Kernels per week

Rules for Stable Kernels
https://kernel.org/doc/html/latest/process/stable-kernel-rules.html

https://kernel.org/doc/html/latest/process/stable-kernel-rules.html

Longterm Kernels

Usually the December release is selected for LTS, with frequent
updates. For example 6.6.50 is the current LTS 6.6.x release, 6.1 is
at 6.1.109.

Long Term Support

Long Term Support was cut
from 6 Years to 2 in 2023. 
 
Older Kernels are harder to
maintain and require Sr.
Engineers.

6.6 expires 31 Dec 2026

See https://endoflife.date/linux

https://endoflife.date/linux

Long Term Support

Long Term Support was cut
from 6 Years to 2 in 2023. 
 
Older Kernels are harder to
maintain and require Sr.
Engineers.

6.6 expires 31 Dec 2026

See https://endoflife.date/linux

https://endoflife.date/linux

In Linux security bugs are bugs!

Hardware is Treated Differently

https://www.kernel.org/doc/html/latest/process/embargoed-hardware-
issues.html

https://www.kernel.org/doc/html/latest/process/embargoed-hardware-issues.html
https://www.kernel.org/doc/html/latest/process/embargoed-hardware-issues.html

No pre-disclosure

Linux is now a CNA
https://www.cve.org/ProgramOrganization/CNAs  
 
EU Regulations for Open Source Project Vulnerabilities 
 
CVEs were being abused by some vendors

https://www.cve.org/ProgramOrganization/CNAs

What can be a CVE?
Common Vulnerabilities and Exposures (CVEs) are a way to
track security vulnerabilities in hardware and software. 
 
A Vulnerability is broadly defined.

panic_on_warn

CVE Lookups are Available
CVE Reports are in a Standard Format

Multiple Search Engines.

Stay Up to Date
Greg Kroah-Hartman

- Greg Kroah-Hartman

https://youtu.be/nJMEuBwMD18?si=y_yTKVDrnY_vPKzx

https://www.youtube.com/watch?v=nJMEuBwMD18
https://youtu.be/nJMEuBwMD18?si=y_yTKVDrnY_vPKzx

Linus hates public
speaking, but he
enjoys Q&A sessions
with Dirk Hohndel.  
 
He doesn’t know the
questions in advance.

The Q&A session takes
place 33 years after
the first public email
about a “(free)
operating system”. 
 
 
The project started 4
months earlier, so it is
a third of a century old. 
 
“And it’s still almost
ready now!”

The Start of Linux

The Newest Release: 6.11.0-rc4

“We’ve been doing this same release process for almost
20 years, you’d think the basics would have been fixed
a long time ago.” 
 
 
Drivers are 1/2 of each release, but still spends
significant time on core kernel operations like memory
management.

New behavior patterns mean we still need to tweak
things in the core.

Extensible Scheduler in 6.11

A new framework that allows developers to implement host-
wide scheduling policies as BPF programs in user space. 
 
 
Not going to be included in 6.11 due to a death in the
developer community.

Now looking to include into 6.12. 
 

Could this be a STL Linux talk? https://
www.socallinuxexpo.org/scale/21x/presentations/sched-ext-
pluggable-linux-scheduler

https://www.socallinuxexpo.org/scale/21x/presentations/sched-ext-pluggable-linux-scheduler
https://www.socallinuxexpo.org/scale/21x/presentations/sched-ext-pluggable-linux-scheduler
https://www.socallinuxexpo.org/scale/21x/presentations/sched-ext-pluggable-linux-scheduler

On Future Planning

“We don’t look 5 years ahead, we look 1-2 releases
ahead.

Later this year we will have the 20th anniversary of the
Linux Realtime project. They are almost done. 
 
It seems that kernel development happens quickly, but
many features are developed in parallel before they are
included into the Kernel.

The Release Process
11 Kernels every 2 years. Kernel major version is
updated around every 20.  
 
We have a structured development process that came
out of not having a structured process. With
companies contributions and multiple distributions, it
became very painful for Linus.

Release management is very strict. Code that is not
ready by the release window will not be accepted. 
 
“We used to have a release schedule that had a goal of
a year and ended up taking multiple years. It was a big
painful change.”

Linus wanted to release every 6 weeks, settled on 9
weeks. People are as happy “as kernel developers ever
are”

Taking Ownership of CVEs

Six months ago the Linux community (Greg) took
ownership of CVE. There are 60 new issues a week: “is
it time to panic?”

Bugs are inevitable. Process can be implemented to
reduce the impact and number of bugs. Any bug can
be a security bug. 
 
Security is important, but we need to move forward so
that new hardware and features can be supported.

Greg took over because having someone else maintain
a list of Linux CVEs was too painful, and some did not
make any sense.

Every Security Issue is Just a Bug

Linux can quickly address and ship fixes to bugs.

“There is a tendency in the IT industry to treat security
issues as special and it ends up harming everybody.” 

90-day delays/embargoes that can extend to 400 days.
It’s demoralizing to the developers to not talk about the
issue until a Press Release is released. 
 
No embargoes longer than one week. Otherwise it
hurts development. 
 
Hardware issues have much longer embargoes. A few
years ago there were multiple HW bugs that the core
kernel team could not talk about.

LTS vs. Stable Releases

LTS vs Stable. Some distributions are starting to
update Kernels more rapidly.

What makes more sense: Old kernel with back ports or
go to a new Kernel? 
 
Old kernels do get fixes, but some get missed because
were not considered important.

Companies that have stayed back and wait for a few
years may have a painful upgrade process.  
 
Most distributions try the stay back approach but end
up migrating to rolling releases. 

LTS vs. Stable Releases

A lot of embedded developers are still on 4.9 kernels.

“It’s a bad idea.” Even some the super-long supported
Kernels. It’s hard to support older kernels. 

Rust in the Kernel
“The slowly increasing footprint of Rust in the Kernel. It
has been frustrating, I had expected uptake in the
Kernel to be faster.” 
 
A large part of it is experienced Kernel developers are
used to C. There has been pushback on Rust.  
 
Rust infrastructure has not been stable. In 6.10 we
finally can use the upstream Rust compiler. It has taken
more than two years.

Cloud

“I didn’t know we were at Kubecon”.

“The only thing that matters is the Kernel.”

Specialization

Moore’s law is gone. Now scaling is heading to
distributed systems like Kubernetes.

One of the The thing that makes it all practical is that
people specialize what they are interested in.

So when it comes to things like Cloud and AI, I see
myself as a Kernel person who wants to support that,
but I am not interested in the end result.

Nvidia
With AI, Nvidia suddenly got much more involved in Kernel side,
went from companies not doing good to companies doing really
good work.

I end up being interested in what we need to do in the kernel to
support AI. There was a lot of memory management that ended
up being updated for AI workloads to use accelerators in user
space. 
 
“I know linux, I don’t know cloud" 

AI

“Autocorrect on Steroids”- Dirk

Interesting use cases for LLM: making work easier for
maintainers. I’ve been talking to companies 
 
I don’t like AI in that it’s horrible hype that keeps coming.

I hope in 5 years or sooner we have every tools. We’re not at the
point where AI are helping us find patterns in the kernel. I’m
optimizing about it.  
 
I’m more interesting in finding bugs and code review and
helping maintainers, not in code generation.

LLMs

What are you looking for LLMs?

Something that hopefully takes the Kernel source code history
into account and learns what good patterns are, and red flags.

We have a lot of tools that flag red-flags, but they find obvious
things. I think AI can do better.

Final Questions

From ChatGPT: “how do you see the future in open source
evolving especially with proprietary cloud services and
platforms?”

“This is why I like doing sessions with Dirk because doesn’t do
the bullshit questions like what is the vision.”

“I never had a big vision, I don’t want to have a big vision. I
associate visions with drugs and mind issues. I see myself as a
plodding engineer and I’m proud of that”.

Use of LLMs in Kernel Dev

What are you looking for LLMs?

Something that hopefully takes the Kernel source code history
into account and learns what good patterns are, and red flags.

We have a lot of tools that flag red-flags, but they find obvious
things. I think AI can do better.

Final Thoughts

Linus is a master craftsman with an intense focus and
strong management skills.

 
The regimented software release process allows one of
the largest software projects in history to run smoothly.

  
 
In an industry full of hype and BS, he happily remains
in his niche.

