
Serverless Basics
Frank Siler me@franksiler.com
2021-09-16

1



2

#include <disclaimer.h>



So what is this “Serverless” thing, anyway?

3

My definition: Serverless is a set of principles and technologies 
to allow the construction of software which is
• highly scalable
• highly available
• cost-manageable
• decomposable
• geographically distributed
• capable of being monitored



How do you go about that?

4

Thoughtworks laid out these ideas.  Some of the important 
characteristics of serverless systems are:
• Low barrier to entry
• Hostless
• Stateless
• Elastic
• Distributed
• Event-Driven

https://www.thoughtworks.com/en-us/insights/blog/traits-serverless-architecture



It doesn’t have to be complicated…..

5
https://medium.com/serverless-transformation/what-a-typical-100-serverless-architecture-looks-like-in-aws-40f252cd0ecb



How would you do it in the old days?

6

A simple static website:

DNS
Web 

Server index.html

Probably from 
your DNS 

registrar or 
maybe your 

webhost

nginx, Apache, 
IIS

File on disk

Your host computer



The Serverless Version

7

Cloud DNS 
provider, eg

Route 53

Cloud Storage 
Provider eg

S3, GCS, Azure 
Storage



So what’s the big deal?

8

• You didn’t change much!
• Exactly.  Except that instead of running on one computer, we are 

now running on a vast distributed network.
• For many applications, this will cost you less and have higher 

uptime than the old model.  BUT…
• An aside. Cloud is not ideal for everything.  It has significant 

advantages for workloads that are:
• Bursty or unpredictable
• Experimental
• Geographically distributed

• You must do your own math and understand your own application 
to make an intelligent decision.  Don’t be breathless about any 
given technology.



Quick Commentary on the Big Three

9

GCP: most developer friendly
• Upside: Super cool databases: BQ, Spanner, BigTable
• Downside: losing money, not platform company / deprecation policy
Azure: obvious choice if you’re a Microsoft shop, particularly for MSSQL
• Upside: great integration for Windows stuff but also OSS friendly, 

privacy
• Downside: cost
AWS: suggest choosing only if they have a specialty service you need
• Upside: lots of specialty services (eg, Satellite Downlink)
• Downside: janky.  Poor documentation.  A friend of a friend was the 

sole responsible person for EC2 for 12 hours a day.

https://steve-yegge.medium.com/dear-google-cloud-your-deprecation-policy-is-killing-you-ee7525dc05dc
https://gist.github.com/chitchcock/1281611


So what technologies do we use?

10

• Technologies to connect

• Technologies to remember

• Technologies to process and understand

• Technologies to diagnose and manage



Technologies to connect

11

- HTTP gateway
- CDN
- Subnet
- VPN
- Firewall
- Site-to-site connection
- Message queues
- Notification system



Technologies to remember

12

- Object storage / artifact repository
- Caching databases: memcache, redis
- Distributed databases: MongoDB, Cassandra, CouchDB
- Then the big boys- proprietary, globally distributed:

- AWS: DynamoDB, RedShift
- GCP: Firestore, BigTable, Cloud Spanner, BigQuery
- Azure: CosmosDB

- And then possibly the most interesting: modern serverless databases 
with old-school APIs:
- AWS: Aurora (MySQL and PostgreSQL), DocumentDB (MongoDB)
- GCP: Atlas (MongoDB)
- Azure: Azure SQL Database (MSSQL), Azure DB for PostgreSQL



Technologies to process and understand

13

- Functions and general compute
- Machine Learning

- Sentiment analysis
- Text and document processing
- Image and video processing
- Speech processing
- Agents
- Translation

- Search



Technologies to diagnose and manage

14

- Logging
- Tracing
- Monitoring
- Profiling
- User management
- Source control
- Deployment tools
- Cost management



Third Party products

15

- Auth0 – login
- Twilio – telephony



Limitations of serverless

16

- Your whole world generally belongs to someone else
- Vendor lock-in
- Latency, costs, tech support
- The world can shift underneath you

- Can be annoying to debug
- Cold Starts
- Limited runtime support
- Per-unit costs (OpEx) tend to be higher
- Local dev can be more complex than more traditional setups

- Fewer tools set up for it
https://www.oreilly.com/library/view/what-is-serverless/9781491984178/ch04.html



17

Some example 
applications



Example: S3 archiver

18

- So here’s the thing: by default, you upload to the “Standard” 
storage class, which is $0.023/GB in us-east1.  By contrast, 
“Deep Glacier” storage is nearly 25x cheaper

- But here’s the thing: you pay for “operations”, which include 
the copy that you need to change storage classes, and you 
also pay for 8KB of Standard storage and 32KB of Glacier 
for every object in Glacier.

- Therefore, it never makes sense to archive objects 8KB or 
smaller



Example: auto transcode on video upload

19

- Didn’t have a chance to get this up and running, but it’s the 
same kind of idea, except that we’re kicking off an outside 
task

- https://motorscript.com/automate-aws-elastic-transcoder-s3-
files-using-lambda-functions/

https://motorscript.com/automate-aws-elastic-transcoder-s3-files-using-lambda-functions/


Example web app: FatPitch

20



21

Questions?



Resources

22

• Possibly my favorite introductory talk: Sam from 
ACloudGuru https://youtu.be/Cd0qLRkTubk

• For the old-fashioned (but still valid) way:
• Hosting deals aggregator: lowendbox.com
• Hosting: ssdnodes.com

• https://martinfowler.com/articles/serverless.html
• https://www.oreilly.com/library/view/what-is-

serverless/9781491984178/
• Interesting blogs

• http://rachelbythebay.com/w/
• https://boyter.org/posts/abusing-aws-to-make-a-search-engine/


